Next: built-in numerics complex, Up: built-in numerics [Contents][Index]
Type of numeric values.
<number>
: <number> type-constructor ZValidate Z as number object and return Z itself. If Z
is not a <number>
: raise and exception.
<number>
: <boolean> type-predicate objThe type predicate is number?
. Return #t
if obj is a
<number>
object, otherwise return #f
.
<number>
: <boolean> equality-predicate this {Z <number>}The equality predicate is =
.
<number>
: <non-negative-fixnum> hash-function thisThe hash function is number-hash
.
<number>
: <boolean> zero? thisApply zero?
to the argument and return its return value.
<number>
: <boolean> nan? thisApply nan?
to the argument and return its return value.
<number>
: <boolean> finite? this<number>
: <boolean> infinite? thisApply finite?
, infinite?
to the argument and return its
return value.
<number>
: <boolean> odd? this<number>
: <boolean> even? thisApply odd?
, even?
to the argument and return its return
value.
<number>
: <number> exact thisApply exact
to the argument and return its return value.
<number>
: <number> inexact thisApply inexact
to the argument and return its return value.
<number>
: <real> magnitude thisApply magnitude
to the argument and return its return value.
<number>
: <real> angle thisApply angle
to the argument and return its return value.
<number>
: <real> real-part thisApply real-part
to the argument and return its return value.
<number>
: <real> imag-part thisApply imag-part
to the argument and return its return value.
<number>
: <number> complex-conjugate thisApply complex-conjugate
to the argument and return its return value.
<number>
: <boolean> = this {Z <number>} …Apply =
to the arguments and return its return value.
<number>
: <boolean> != this {Z <number>} …Apply !=
to the arguments and return its return value.
<number>
: <number> + this {Z <number>} …Apply +
to the arguments and return its return value.
<number>
: <number> - this {Z <number>} …Apply -
to the arguments and return its return value.
<number>
: <number> * this {Z <number>} …Apply *
to the arguments and return its return value.
<number>
: <number> / this {Z <number>} …Apply /
to the arguments and return its return value.
<number>
: <number> add1 thisApply add1
to the arguments and return its return value.
<number>
: <number> sub1 thisApply sub1
to the arguments and return its return value.
<number>
: <number> exp thisApply exp
to the argument and return its return value.
<number>
: <number> log this<number>
: <number> log this {Z <number>}Apply log
to the arguments and return its return value.
<number>
: <number> expt this {Z <number>}Apply expt
to the arguments and return its return value.
<number>
: <number> square thisApply square
to the arguments and return its return value.
<number>
: <number> cube thisApply cube
to the arguments and return its return value.
<number>
: <number> sqrt thisApply sqrt
to the arguments and return its return value.
<number>
: <number> cbrt thisApply cbrt
to the arguments and return its return value.
<number>
: <number> sin this<number>
: <number> cos this<number>
: <number> tan thisApply sin
, cos
, tan
to the argument and return its
return value.
<number>
: <number> asin this<number>
: <number> acos this<number>
: <number> atan this<number>
: <number> atan this {Z <number>}Apply asin
, acos
, atan
to the argument and return
its return value.
<number>
: <number> sinh this<number>
: <number> cosh this<number>
: <number> tanh thisApply sinh
, cosh
, tanh
to the argument and return
its return value.
<number>
: <number> asinh this<number>
: <number> acosh this<number>
: <number> atanh thisApply asinh
, acosh
, atanh
to the argument and
return its return value.
Next: built-in numerics complex, Up: built-in numerics [Contents][Index]