Next: baselib math ops complex, Previous: baselib math ops trascend, Up: baselib math ops [Index]
Return the principal square root of z. For rational z, the
result has either positive real part, or zero real part and
non–negative imaginary part. With \log defined as in
baselib math semantics trascend, the value of (sqrt
z)
could be expressed as e^{(\log z)/2}.
The sqrt
procedure may return an inexact result even when given
an exact argument.
(sqrt -5) ⇒ 0.0+2.23606797749979i ; approximately (sqrt +inf.0) ⇒ +inf.0 (sqrt -inf.0) ⇒ +inf.0i
The exact-integer-sqrt
procedure returns two non–negative exact
integer objects s and r where k = s^2 + r and
k < (s+1)^2.
(exact-integer-sqrt 4) ⇒ 2 0 ; two return values (exact-integer-sqrt 5) ⇒ 2 1 ; two return values
Return z1 raised to the power z2. For non–zero z1,
this is e^{(z_2 \log z_1)}. 0.0^z is 1.0 if
z = 0.0, and 0.0 if (real-part z)
is
positive. For other cases in which the first argument is zero, either
an exception is raised with condition type
&implementation-restriction
, or an unspecified number object
is returned.
For an exact real number object z1 and an exact integer object
z2, (expt z1 z2)
must return an exact result.
For all other values of z1 and z2, (expt z1
z2)
may return an inexact result, even when both z1 and
z2 are exact.
(expt 5 3) ⇒ 125 (expt 5 -3) ⇒ 1/125 (expt 5 0) ⇒ 1 (expt 0 5) ⇒ 0 (expt 0 5+.0000312i) ⇒ 0.0 (expt 0 -5) ⇒ unspecified (expt 0 -5+.0000312i) ⇒ unspecified (expt 0 0) ⇒ 1 (expt 0.0 0.0) ⇒ 1.0
Next: baselib math ops complex, Previous: baselib math ops trascend, Up: baselib math ops [Index]