Next: built-in numerics complex, Up: built-in numerics [Contents][Index]
Type of numeric values.
<number>: <number> type-constructor ZValidate Z as number object and return Z itself. If Z
is not a <number>: raise and exception.
<number>: <boolean> type-predicate objThe type predicate is number?. Return #t if obj is a
<number> object, otherwise return #f.
<number>: <boolean> equality-predicate this {Z <number>}The equality predicate is =.
<number>: <non-negative-fixnum> hash-function thisThe hash function is number-hash.
<number>: <boolean> zero? thisApply zero? to the argument and return its return value.
<number>: <boolean> nan? thisApply nan? to the argument and return its return value.
<number>: <boolean> finite? this<number>: <boolean> infinite? thisApply finite?, infinite? to the argument and return its
return value.
<number>: <boolean> odd? this<number>: <boolean> even? thisApply odd?, even? to the argument and return its return
value.
<number>: <number> exact thisApply exact to the argument and return its return value.
<number>: <number> inexact thisApply inexact to the argument and return its return value.
<number>: <real> magnitude thisApply magnitude to the argument and return its return value.
<number>: <real> angle thisApply angle to the argument and return its return value.
<number>: <real> real-part thisApply real-part to the argument and return its return value.
<number>: <real> imag-part thisApply imag-part to the argument and return its return value.
<number>: <number> complex-conjugate thisApply complex-conjugate to the argument and return its return value.
<number>: <boolean> = this {Z <number>} …Apply = to the arguments and return its return value.
<number>: <boolean> != this {Z <number>} …Apply != to the arguments and return its return value.
<number>: <number> + this {Z <number>} …Apply + to the arguments and return its return value.
<number>: <number> - this {Z <number>} …Apply - to the arguments and return its return value.
<number>: <number> * this {Z <number>} …Apply * to the arguments and return its return value.
<number>: <number> / this {Z <number>} …Apply / to the arguments and return its return value.
<number>: <number> add1 thisApply add1 to the arguments and return its return value.
<number>: <number> sub1 thisApply sub1 to the arguments and return its return value.
<number>: <number> exp thisApply exp to the argument and return its return value.
<number>: <number> log this<number>: <number> log this {Z <number>}Apply log to the arguments and return its return value.
<number>: <number> expt this {Z <number>}Apply expt to the arguments and return its return value.
<number>: <number> square thisApply square to the arguments and return its return value.
<number>: <number> cube thisApply cube to the arguments and return its return value.
<number>: <number> sqrt thisApply sqrt to the arguments and return its return value.
<number>: <number> cbrt thisApply cbrt to the arguments and return its return value.
<number>: <number> sin this<number>: <number> cos this<number>: <number> tan thisApply sin, cos, tan to the argument and return its
return value.
<number>: <number> asin this<number>: <number> acos this<number>: <number> atan this<number>: <number> atan this {Z <number>}Apply asin, acos, atan to the argument and return
its return value.
<number>: <number> sinh this<number>: <number> cosh this<number>: <number> tanh thisApply sinh, cosh, tanh to the argument and return
its return value.
<number>: <number> asinh this<number>: <number> acosh this<number>: <number> atanh thisApply asinh, acosh, atanh to the argument and
return its return value.
Next: built-in numerics complex, Up: built-in numerics [Contents][Index]